
unicore.distribute Documentation
Release 1.0

Praekelt Foundation

May 16, 2016

Contents

1 Installation 3

2 Configuration 5
2.1 Indexing . 5
2.2 Proxying . 5

3 Running 7

4 Webhooks 9

5 Polling 11

6 Querying 13

7 URL structure 17

i

ii

unicore.distribute Documentation, Release 1.0

unicore.distribute is a collection of APIs and tools for dealing with Universal Core content repositories.

Contents 1

unicore.distribute Documentation, Release 1.0

2 Contents

CHAPTER 1

Installation

The recommended way to install this for development is to install it in a virtualenv but it’s not necessary.

pip install unicore.distribute

3

https://virtualenv.pypa.io/en/latest/

unicore.distribute Documentation, Release 1.0

4 Chapter 1. Installation

CHAPTER 2

Configuration

Put the following in a file called development.ini

[app:main]
use = egg:unicore.distribute
repo.storage_path = repos/

[server:main]
use = egg:waitress#main
host = 0.0.0.0
port = 6543

2.1 Indexing

unicore.distribute can automatically index data on Elasticsearch. To enable this, add these options to the
[app:main] section:

es.host = http://localhost:9200
es.indexing_enabled = true

2.2 Proxying

Use unicore.distribute as an Elasticsearch proxy by adding these options to the [app:main] section:

proxy.enabled = True
proxy.path = esapi
proxy.upstream = http://localhost:9200

For most use cases es.host and proxy.upstream should point to the same Elasticsearch service.

5

unicore.distribute Documentation, Release 1.0

6 Chapter 2. Configuration

CHAPTER 3

Running

Clone a Universal Core content repository and run the server:

$ git https://github.com/smn/unicore-sample-content \
repos/unicore-sample-content

$ pserve development.ini
$ curl http://localhost:6543/repos.json

It is also possible the clone a repository directly from the API:

$ curl -XPOST -H 'Content-Type: application/json' \
-d '{"repo_url": "https://example.com/repo.git"}' \
http://localhost:6543/repos.json

The repo will only be indexed if cloned via the API (and indexing is enabled). Note that the repo name and index
prefix are the same. So in the two examples above the index prefixes are “unicore-sample-content” and “repo”
respectively.

To use a different repo name, specify repo_name:

$ curl -XPOST -H 'Content-Type: application/json' \
-d '{"repo_url": "https://example.com/repo.git", \

"repo_name": "repo-foo"}' \
http://localhost:6543/repos.json

7

unicore.distribute Documentation, Release 1.0

8 Chapter 3. Running

CHAPTER 4

Webhooks

The application can notify you when it is notified of changes made to the upstream repository:

Make sure the lines in development.ini relating to unicore.webhooks are uncommented and then initialize
the database:

$ alembic upgread head

Now your database is configured and you can store Webhooks:

$ curl -XPOST \
-H 'Content-Type: application/json' \
-d '{"event_type": "repo.push", "url": "http://requestb.in/vystj5vy", "active": true}' \
http://localhost:6543/hooks

{
"uuid": "09b901ccc5094f1a89f8bd03165fe3d6",
"owner": null,
"url": "http://requestb.in/vystj5vy",
"event_type": "repo.push",
"active": true

}

Note: Currently the only event_type supported is repo.push

Now if we notify the API of changes being made upstream (say via GitHub’s webhooks) we will now relay that all
webhooks registered:

$ curl -XPOST http://localhost:6543/repos/unicore-sample-content.json

Here is the request made to the registered URL with the JSON payload:

9

unicore.distribute Documentation, Release 1.0

10 Chapter 4. Webhooks

CHAPTER 5

Polling

Unicore.distribute ships with a command line program:

$ unicore.distribute --help
usage: unicore.distribute [-h] {poll-repositories} ...

unicore.distribute command line tools.

positional arguments:
{poll-repositories} Commands
poll-repositories poll repositories

optional arguments:
-h, --help show this help message and exit

The only feature currently available is one which can be used to poll repositories at a regular interval to see if new
content has arrived. If that is the case then an event is fired and the registered webhook URLs are called:

$ unicore.distribute poll-repositories --help
usage: unicore.distribute poll-repositories [-h] [-d REPO_DIR] [-i INI_FILE]

[-u BASE_URL]

optional arguments:
-h, --help show this help message and exit
-d REPO_DIR, --repo-dir REPO_DIR

The directory with repositories.
-i INI_FILE, --ini-file INI_FILE

The project's ini file.
-u BASE_URL, --base-url BASE_URL

This server's public URL (for webhooks)

Hook up the poll-repositories sub-command to cron for regular polling:

*/15 * * * * unicore.distribute poll-repositories -d /var/praekelt/repos/ -i development.ini -u http://unicore.io

11

unicore.distribute Documentation, Release 1.0

12 Chapter 5. Polling

CHAPTER 6

Querying

The individual repositories are all exposed via the repos.json base path. Let’s step through the process of cloning
a repository and then querying the data via the web interface:

$ curl -XPOST -H 'Content-Type: application/json' \
-d '{"repo_url": "https://github.com/smn/unicore-sample-content.git"}' \
http://localhost:6543/repos.json

Now repos/unicore-sample-content.json accessible via the API and exposes the schema and some meta-
data about the content.

The schema key in the repository object has an Avro schema representing the content. This allows one to automati-
cally generate model definitions to work with the data.

13

unicore.distribute Documentation, Release 1.0

Now that we have a list of all object types in the content repository we can get listings of these models:

Or we can get an individual object by requesting it by its UUID:

14 Chapter 6. Querying

unicore.distribute Documentation, Release 1.0

15

unicore.distribute Documentation, Release 1.0

16 Chapter 6. Querying

CHAPTER 7

URL structure

The following URLs are created:

http://localhost:6543/repos.json [GET, POST]
http://localhost:6543/repos/<repo-name>.json [GET]
http://localhost:6543/repos/<repo-name>/<content-type>.json [GET]
http://localhost:6543/repos/<repo-name>/<content-type>/<uuid>.json [GET, PUT, DELETE]

Note: The PUT and DELETE methods only operate on the local repository, the are not pushed up to the upstream
repository that was cloned.

17

	Installation
	Configuration
	Indexing
	Proxying

	Running
	Webhooks
	Polling
	Querying
	URL structure

